Buffer Overrun Detection using Linear Programming and
Static Analysis ~

Vinod Ganapathy, Somesh Jha David Chandler, David Melski, David Vitek

University of Wisconsin-Madison Grammatech Inc., Ithaca, NY 14850
[vg,jha]@cs.wisc.edu [chandler,melski,dvitek]@grammatech.com
ABSTRACT , 26, 29, 30] that examine source codeétiminatethese bugs be-

fore the code is deployed. Unlike static techniques, dynamic tech-
nigues do not eliminate bugs, and typically have the undesirable
effect of causing the application to crash when an attack is discov-

This paper addresses the issue of identifying buffer overrun vulner-
abilities by statically analyzing C source code. We demonstrate a
light-weight analysis based on modeling C string manipulations as
a linear program. We also present fast, scalable solvers based or?red' . . . . .

linear programming, and demonstrate techniques to make the pro- In this paper, we describe the design and implementation of a
gram analysis context sensitive. Based on these techniques, we builfOOI that statically analyzes C source code to detect buffer overrun

a prototype and used it to identify several vulnerabilities in popular Vulnerabilities. In particular, this paper demonstrates:
security critical applications e The use of static analysis to model C string manipulations as a

linear program.
e The design and implementation of fast, scalable solvers based

Categories and Subject Descriptors on novel use of techniques from the linear programming literature.
D.3.3 [Language Constructs and Features Constraints; G.1.6 The solution to the linear program determines buffer bounds.
[Optimization]: Linear Programming; D.2.5qoftware Engineer- e Techniques to make the program analysis context sensitive.

ing]: Testing and Debugging ¢ The efficacy of other program analysis techniques, such as static

slicing to understand and eliminate bugs from source code.
One of our principle design goals was to make the tool scale to

General Terms large real world applications. We used the tool to audit several pop-

Algorithms, Languages, Reliability, Security ular and commercially used packages. The tool identifiegrevi-
ously unknown buffer overruns inu-ftpd-2.6.2 (Section6.1.1)
Keywords in addition to several known vulnerabilities in other applications.
) o ) The rest of the paper is laid out as follows: We discuss related
Buffer overruns, static analysis, linear programming research in Sectiod, followed by an overall description of our tool
in Section3. Section4 describes constraint resolution techniques
1. INTRODUCTION used by our tool, and Sectidhdescribes techniques to make the

Buffer overruns are one of the most exploited class of security program analysis cqntext-sensmve. Seciocontains experimen-
vulnerabilities. In a study by the SANS institutd [buffer overruns 1@l results, and Sectionconcludes.
in RPC services ranked as the top vulnerability to UNIX systems.
A simple mistake on the part of a careless programmer can cause
serious security problem with consequences as serious as a remote™” RELATED WORK
user acquiringoot  privileges on the vulnerable machine. Toadd  Several techniques have been proposed to mitigate the problem
to the problem, these vulnerabilities are easy to exploit, and “cook- Of buffer overruns. Dynamic techniques such as Stackguaid [
books” [/] are available to construct such exploits. As observed by RAD [10] help to detect and prevent stack smashing attacks by pro-
several researcher&j, 30], C is highly vulnerable because there tecting the return address on the stack. ProPolicgdeneralizes
are several library functions that manipulate buffers in an unsafe these techniques by protecting more entities such as frame pointers,

way. local variables and function arguments. Pointguard protects all
Several approaches have been proposed to mitigate the problemPointer accesses by encrypting the pointers when they are stored in
these range from dynamic techniqués [0, 11, 13, 18, 24] that memory, and decrypting them when they are loaded into registers.

preventattacks based on buffer overruns, to static techniques [ ~ Safe languages like Java introduce runtime array bounds checks to
preserve type-safety. However, redundant runtime checks can im-
*This work was supported in part by NSF grant CCR-9619219 and pose performance overhead, and tools such as ABRifn to

ONR contracts N00014-01-1-0796 and N00014-01-1-0708. eliminate redundant checks. CCured,[24] is a tool that uses
Permission to make digital or hard copies of all or part of this work for Static analysis to judiciously insert runtime checks for correctness
personal or classroom use is granted without fee provided that copies areOf pointer manipulations to create a type-safe version of a C pro-
not made or distributed for profit or commercial advantage and that copies gram. These techniques prevent attacks based on unsafe memory
bear this notice and the full citation on the first page. To copy otherwise, to accesses, but fail to eliminate the bugs from source code.
reput_)llsh,to post on servers or to redistribute to lists, requires prior specific This paper focuses on static analysis techniques that examine
permission and/or a fee. de for th f buff d thus help th
CCS'03,October 27-30, 2003, Washington, DC, USA source code for the presence of buffer overruns, and thus help the
Copyright 2003 ACM 1-58113-738-9/03/001G$5.00. developer in eliminating the overrun before source code is deployed.




Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
OCT 2003 2. REPORT TYPE 00-00-2003 to 00-00-2003
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Buffer Overrun Detection using Linear Programming and Static Analysis | o .\t NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Wisconsin ,Computer Sciences Department,716 L angdon REPORT NUMBER
Street,M adison,W1,53706

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 10
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



Several static analysis tools have been proposed. These tools can be

broadly classified as (a) Annotation driven tools (b) Tools that use
symbolic analysis and (c) Tools that extract a model from the source
code, and use it to detect the presence of bugs.

CSSV [L7] and Splint P2] are annotation driven tools. In these
tools, user-supplied annotations, such as pre- and post-conditions
of a function, are used to aid static analysis. CSSV aims to find
all buffer overflows with just a few false alarms. The basic idea
is to convert the C program into an integer program, with correct-

ness assertions included, and use a conservative static analysis al-

gorithm to detect faulty integer manipulations, which directly trans-
late to bugs in the C source code. The analysis is performed on a
per-procedure basis, and annotations (catieatract9 are used to
make the analysis inter-procedural. The number of false alarms

PDGs Linear, Linear,
C Source SDG Constraints Constraints
. Constraint Taint Constraint
Codesurfer Generator Analyzer Solver
PDGs
SDG Range
Ranges -

/
Choice of two
,Rgﬁi‘g;d possible solvers
lWamings

Figure 1: Overall Architecture of the Buffer Overrun Tool

generated by the tool depends on the accuracy of the contracts. The
analysis used by CSSV to check the correctness of integer manipu-
lations was heavyweight, and may scale poorly to large programs.
For instance, CSSV took 200 seconds to analyze a string ma-
nipulation program with a total of abod00 lines of code. Splint
on the other hand, sacrifices soundness and completeness, and use
a light-weight static analysis to detect bugs in source code. Splint
uses a flow-sensitive intra-procedural program analysis, and user
supplied pre- and post-conditions are used to make the analysis
inter-procedural.

ARCHER [37] is a tool that functions by symbolically execut-
ing the code, while maintaining information about variables in a
database as execution proceeds. The current state of the program is
given by the values in the database. The execution of program state-
ments potentially causes a change in the state of the program. At

(1) main(int argc, char* argv[])}{

) char header[2048], buf[1024],
*ccl, *cc2, *ptr;

int counter;

FILE *fp;

ptr = fgets(header, 2048, fp);

ccl = copy_buffer(header);

for (counter = 0; counter < 10; counter++){
ptr = fgets (buf, 1024, fp);

(10) cc2 = copy_buffer(buf);
(11)

(12) }

(13)

(14) char *copy_buffer(char *buffer){
(15) char *copy;

(16) copy = (char *) malloc(strlen(buffer));
17) strcpy(copy, buffer);

(18) return copy;

(19) }

statements that access buffers, ARCHER checks, using the database,
whether the access is within the bounds of the array, and flags an
error if not. Rugina and Rinard[] describe a tool geared specifi-
cally to detect out-of-bounds errors and race conditions on small di-
vide and conquer programs where they determine symbolic bounds o
on array indices and use this information to detect illegal accesses.generator and thedetector front-endvhich is a GUI to help the
Larson and Austin propose a testing todi[ to detect input re- ~ USer examine potential overruns. Sectidf describes constraint
lated faults. This tool uses actual program execution using a testgeneration. Sectiof.3presentsaint analysis which identifies and
input, but enhances bug coverage by maintaining more information FéMOVes unconstrained constraint variables. Sectiéoverviews
about the possible values of variables along the path followed by gonstralnt resolutlion, and Secti@rb explains .the use of the solu-
the test input. These techniques have the advantage that they cafjonto the_ constramt _system to detect p_otentlal buffer overruns. The
be used to detect more than just array out of bounds accesses, as Rregram in Figure will serve as a running example.

demonstrated in[3]. Moreover, the analysis is path sensitive since 3.1 CodeSurfer

an actual program path is followed, and hence false alarm rates are™"

low. However, the disadvantage is that the coverage of these tools
is limited to the set of program paths examined.

Figure 2: Running Example

The constraint generator and the detector front-end are both de-
veloped as plug-ins to CodeSurfer. CodeSurfer is a code under-

BOON [29, 30], like our tool, extracts a model from the source standing tool that was originally designed to compute precise inter-
code — namely, these tools model strings as abstract data types an@rocedural slices’0, 21]. CodeSurfer builds a whole program rep-
transform the buffer overrun detection problem into a range analysis fésentation that includes a system dependence graph (that is com-
problem. However, BOON does not employ precise pointer anal- Posed of program dependence graphs for each procedure), an inter-
ysis algorithms. Moreover, the analysis was flow- and context- in- Procedural control-flow graph, abstract syntax trees (ASTSs) for pro-
sensitive. Our tool builds on the seminal ideas introduced in BOON 9ram expressions, side-effect information, and points-to informa-
by using more precise pointer analysis algorithms, and enhanceslion. CodeSurfer presents the user with a GUI for exploring its
the program analysis to make it context-sensitive. Additionally, Internal program representations. The queries that CodeSurfer sup-
our tool employs algorithms based on linear programming for con- POrts include forward and backward slicing from a program point,
straint resolution as opposed to the custom built range solver em-Precise inter-procedural chopping between two program points, find-
ployed by BOON. Our tool also equips the user with several other N9 data and control dependence predecessors and successors from

static analysis algorithms such as static slicing, which enable the & Program point, and examining the points-to set of a program vari-
user to understand the reason behind the bug. able. CodeSurfer presents the user with a listing of their source

code that is “hot”, i.e., the user can click on a program point in their
code and ask any of the queries listed above.

CodeSurfer has two primary uses in our tool: (1) the constraint
generator is a CodeSurfer plug-in that makes use of CodeSurfer’'s
ASTs and pointer analysis (based on Andersen’s anal§gBis(R)
the detector front-end is a CodeSurfer plug-in that uses CodeSurfer's

3. OVERALL TOOL ARCHITECTURE

The tool has five components (Figutg that are described in
the remainder of this section. Secti8ri describes the code un-
derstanding tool CodeSurfer. CodeSurfer is used bytmstraint



e 30 St For each user-defined functiéso , there are constraint variables
headerlused!min <1 6 for foo ’'s _formal parameters that are integers or stringgodf re-
bufferlused!max > buflused!max 10 turns an integer or a string, then there are constraint variables (e.g.,
bufferlusedimin < buflused!min 10 copy _buffer$returnlused!max ) for the function’s return value.
buffer!alloc!max > buflalloc!max 10 . L . .
bufferlalloc!min < buftallocimin 10 A cal] to a user-defined function is modeleq with constraints for Fhe
copy _buffer$return!alloc!max > copy!lalloc!max 18 passing of actual parameters and the assignment of the function’s
copy ,Eugerire:urniallogllmin >§ cop‘y!allg::!min g return value.

CO| _obutrersreturniused:max copyiused:max . . . . .

cogz “buffersreturniused!min N Cog;'!used!mm 18 As in BOON, constraints are associated with pointers to charac-
cc2lusedimax > copy _buffer$returniused!max 10 ter buffers rather than the character buffers themselves. This means
CCgiuﬁedllm'” S>°°PY —bgfffeffsigftutm!ulsﬁd”p'n }8 that some aliasing among character buffers is not modeled in the
ccZiallocimax 2~ Copy _bulrersreturnialiocimax . .

co2lallocimin S copy _buffersreturntaliocimin 10 constra!nts _and false negatives may _result. We_ c_hose t_o follow
counter ‘lmax > counterlmax + 1 8 BOON in this regard because we are interested in improving pre-
coumer!m/?x > counter l’!max 8 cision by using a context sensitive program analysis (Secijon
counter “imin < counterimin + 1 8 Currently, context-sensitive pointer analysis does not scale well,
counter!min < counter “min 8

and using a context-insensitive pointer analysis would undermine
our aim of performing context-sensitive buffer overrun analysis.
However, we discovered that we could make use of pointer anal-
ysis to eliminate some false negatives. For instance, consider the
statement $trcpy(p->f, buf) , wherep could point to a struc-
GUI in order to display potential overruns. Information about po- tures. The constraints generated for this statement would relate
tential overruns is linked to CodeSurfer’s internal program repre- the constraint variables far.f andbuf . Moreover, we use the
sentation, so that the user can make use of CodeSurfer’s featurestesults of pointer analysis to handle arbitrary levels of dereferenc-
such as slicing, in order to examine potential overruns. ing. Constraint generation also makes use of pointer information
. . for integers.
3.2 Constraint Generation Figure3 shows a few constraints for the program in FigBrand
Constraint generation in our tool is similar to the approach pro- the program statement that generated them. Most of the constraints
posed in BOON §(0]. We also use points-to information returned are self-explanatory, however a few comments are in order:
by CodeSurfer, thus allowing for more precise constraints. Each e Since we do not model control flow, we ignore predicates during
pointerbuf , to a character buffer, is modeled by four constraint constraint generation. Hence, in Figutethe predicateounter
variables, namelypuflalloc!max and buflalloc!min , which < 10inline (8) was ignored.
denote the maximum and minimum number of bytes allocated for e The statementounter++ is particularly interesting when gener-
the buffer, anduflused!max andbuflused!min , which denote ating linear constraints. A linear constraint suctcaster'max
the maximum and minimum number of bytes used by the buffer. > counterlmax + 1 cannot be interpreted by a linear program
Each integer variable is modeled by constraint variablésax solver. Hence, we model this statement by treating it as a pair of
andi!min  which represent the maximum and minimum value ,of statementscounter / = counter + 1; counter = counter ’
respectively. Program statements that operate on character bufferd’hese two constraints capture the fact that counter has been incre-
or integer variables are modeled using linear constraints over con-mented byl, and can be translated into constraints that are accept-
straint variables. able to a linear program solver, although the resulting linear pro-
Our constraints model the program ifil@w- andcontext insensi- gram will beinfeasible(Sectiond).
tive manner, with the exception of library functions that manipulate e A program variable that acquires its value from the environment
character buffers. A flow-insensitive analysis ignores the order of or from user input in an unguarded manner is considered unsafe
statements, and a context-insensitive analysis does not differenti-— for instance, the statemegdtenv("PATH") , which returns the
ate between multiple call-sites to the same function. For a function search path, could return an arbitrarily long string. To reflect the
call to a library function that manipulates strings (estrgpy or fact that the string can be arbitrarily long, we generate constraints
strlen ), we generate constraints that model the effect of the call; getenv$returnlused!max > o0, getenv$returnlused!min
for these functions, the constraint model is context-sensitive. In < 0. Similarly, an integer variable accepted as user input gives
Section5, we will show how we extended the model to make the rise to constraint8max > oo andilmin =~ < - oo
constraints context-sensitive for user defined functions as well.
Constraints are generated using a single pass over the prqgram’%_3 Taint Analysis
statements. There are four program statements that result in con- ) ; ) .
straint generation: buffer declarations, assignments, function calls, '€ linear constraints then pass throughiat analysismodule.
and return statements. A buffer declaration suathas buff  1024] The main goal of the taint analysis mpdule is to make the constraints
results in constraints that indicate thatf is of size 1024. A amenable to the solvers presented in Seciioifhese solvers use
statement that assigns into a character buffer (eufij="c’ ) linear programming, which can work only with finite values, hence

results in constraints that reflect the effect of the assignment on this requires us to remove variables that can obtain infinite values.
bufiused'max  andbuflusedimin . An assignment to an integer Section4 will also demonstrate the importance wéx variables

i results in constraints ditmax andilmin having finite lower bounds anain variables having finite upper

As mentioned above, a function call to a library function that POUNdS. Hence, taint analysis aims to:

manipulates string buffers is modeled by constraints that summarize® 'dentify and remove any variables that get an infinite valae
the effect of the call. For example, tisecpy statement at line ~ Mentioned in sectio.2, some constraint variablesr are associ-

(18) in Figure2 results in the following constraints: ated W_ith_ Con_st_raints of th_e fom_ar > oo Or var _g - co. Tair_n
analysis identifies constraint variables that can directly or indirectly
be set tatoo and removes them from the set of constraints.

e Identify and remove any uninitialized constraint variabldhe

Figure 3: Some constraints for the running example

copylused!'max > bufferlused!'max
copy!used!min < bufferlused!min



system of constraints is examined to see ifnadi constraint vari-
ables have a finite lower bound, and aiin constraint variables
have a finite upper bound; we refer to constraint variables that do
not satisfy this requirement aginitialized Constraint variables
may fail to satisfy the above requirement if either the program vari-
ables that they correspond to have not been initialized in the source
code, or program statements that affect the value of the program
variables have not been captured by the constraint generator. The
latter case may arise when the constraint generator does not have
a model for a library function that affects the value of the program
variable. It is important to realize that this analysis is not meant
to capture uninitializeghrogramvariables, but is meant to capture
uninitializedconstraintvariables.

In the constraints obtained by the program in Figyr@o vari-
ables will be removed by the taint analysis module, assuming that
we modeled the library functionssrlen |, fgets andstrcpy cor-
rectly. The taint analysis algorithm is presented in detaiili#j.[

3.4 Constraint Solving

The constraints that remain after taint analysis can be solved us-

ing linear programming. We have developed two solvers, both of
which use linear programming to obtain values for the constraint

the buffer than it could possible hold, and we conclude that there
was an overrun on the buffer.

Variable min Value | maxValue
headerlused 1 2048
header!alloc 2048 2048
buflused 1 1024
buflalloc 1024 1024
ccllused 1 2048
ccllalloc 0 2047
ptrlused 1 2048
ptrlalloc 1024 2048
cc2lused 1 2048
cc2lalloc 0 2047
bufferlused 1 2048
bufferlalloc 1024 2048
copylused 1 2048
copy'alloc 0 2047
counter 0 0o

Figure 4: Values of some constraint variables

We have developed a GUI front end that enables the end-user to
“surf” the warnings — every warning is linked back to the source
code line that it refers to. Moreover, the user can exploit the pro-

variables. The goal of both solvers is the same, to obtain the best9fa@m slicing capabilities of CodeSurfer to verify real overruns.
possible estimate of the number of bytes used and allocated for each

buffer in any execution of the program. For a buffer pointed to by
buf , finding the number of bytes used corresponds to finding the
“tightest” possible rangeb[iflused!min  ..buflused!max ]. This

can be done by finding the lowest and highest values of the con-
straint variablesuflused'max  andbuflused!'min  respectively
that satisfy all the constraints. Similarly, we can find the “tight-
est” possible range for the number of bytes allocated for the buffer
by finding the lowest and the highest valuesbaflalloc!max

and buf'alloc!min respectively. For the program in Figuge

the constraint variables take on the values shown in Figui&/e
explain in detail in Sectiod how these values were obtained.

3.5 Detecting Overruns

4. CONSTRAINT RESOLUTION USING LIN-
EAR PROGRAMMING

This section describes two solvers based on linear programming
that the tool uses to solve the set of generated constraints. We chose
to use linear programming for several reasons:

e The use of linear programming allows us to model arbitrary linear
constraints. Hence, our solver automatically evolves to handle new
kinds of constraints. Other tool&§, 30, 33] use specialized solvers

— generation of new kinds of constraints will mean that these solvers
have to be specially adapted to deal with them.

e Commercial implementations of linear program solvers are known
to scale efficiently to millions of constraints.

e The use of a well developed theory helped us easily reason about

Based on the values inferred by the solver, as well as the valuesthe correctness of our solvers.
inferred by the taint analysis module, the detector decides whethere Finally, we are currently working on the use of theal of the
there was an overrun on each buffer. We use several heuristics tdlinear program for diagnostic information. In particular, we are in-
give the best possible judgment. We shall explain some of these investigating how the dual linear program can be used to produce a

the context of the values from Figude

e The solver found that the buffer pointed to lwader has2048
bytes allocated for it, but that its length could have been between
1 and 2048 bytes. This is a scenario where a buffer overrun can
never occur — and hence the buffer pointed tiéyder is flagged

as “safe”. The same is true of the buffer pointed tdbfy .

e The buffer pointed to bytr was found to have betweén24 and
2048 bytes allocated, while betwednand2048 bytes could have
been used. Note thatr is part of two assignment statements.
The assignment statemegd) could makeptr point to a buffer

as long a2048 bytes, while the statemei®) could makeptr
point to a buffer as long a)24 bytes. The flow insensitivity of the

program path that leads to the statement that causes the overflow.
Such information is valuable since it tells the user of the teloy
there was an overrun.

4.1 Overview of the solver
A Linear Program is an optimization problem that is expressed
as follows:
Minimize : ¢'x
Subject To : Ax > b

whereA is anm x n matrix of constantsh andc are vectors of
constants, anxl is a vector of variables. This is equivalent to saying

analysis means that we do not differentiate between these progranthat we have a system of. inequalities inn variables, and are

points, and hence can only infer tipat  was up ta2048 bytes long.

In such a scenario, where the valuepnfiused'max s bigger
than ptrlalloc!min but smaller than (or equal to) the value of
ptrialloc!max , we conservatively conclude that there might have
been an overrun. This can result ifisdse positivedue to the flow
insensitivity of the analysis.

e In cases such as for program variabty where we observe
thatcopy!'alloc!max is less tharcopy'used'max , we know that
there is a run of the program in which more bytes were written into

required to find values for the variables such that all the constraints
in the system are satisfied and thigiective functiorcTx takes its
lowest possible value. It is important to note that the above form
is just one of the numerous ways in which a linear program can be
expressed. For a more comprehensive view of linear programming,
see P7]. Linear programming works on finite real numbers; that
is, the variables in the vector are only allowed to take finite real
values. Hence the optimum value of the objective function, if it
exists, is always guaranteed to be finite.



Linear programming is well studied in the literature, and there
are well-known techniques to solve linear programs, Simpléx [

1 being the most popular of them. Other known techniques, such
interior point methods{1] work in polynomial time. Commer-
cially available solvers for solving linear programs, such as SoPlex
[32] and CPLEX P9 implement these and related methods.

The set of constraints that we obtained after program analysis

Finally, a linear program is said to lxgfeasibleif it has no feasible
solutions. An example of an infeasible linear program is shown in
Figure5.

counter!max
counter’!max > counter!max + 1
counter!max > counter’!max

Minimize :

Subject To :

are linear constraints, hence we can formulate our problem as a lin-

ear program. Our goal is to obtain the valuestaitalloc!min ,
buflalloc!max , buflused!min andbuflused!imax  that yield

the tightest possible ranges for the number of bytes allocated and

used by the buffer pointed to yf in such a way that all the con-
straints are satisfied. Formally, we are interested in finding the low-
est possible values dfuflalloc!max andbuflused!max , and

the highest possible valueskafflalloc!min andbuflused!min

Figure 5: An Infeasible Linear Program

In our formulation, if a linear program has an optimal solution,
we can use that value as the buffer bound. None of the linear pro-
grams in our case can be unbounded, since the constraints have
been examined by the taint analyzer to ensure thaiallvariables
have finite lower bounds. We minimize for thex variables in the

subject to the set of constraints. We can obtain the desired boundsPPiective function, and since all theax variables have finite lower

for each buffebuf by solving four linear programs, each with the
same constraints but with different objective functions:

Minimize: buflalloc!max
Maximize:buflalloc!min
Minimize: buflused!max
Maximize: buflused!min

However, it can be shown (the proof is beyond the scope of this
paper) that for the kind of constraints generated by the tool, if all
max variables have finite lower bounds, andralh variables have

finite upper bounds, then the values obtained by solving the four

linear programs as above are also the values that optimize the linea

program with the same set of constraints subject to the objective

bounds, the lowest value that eaghx variable can obtain is also
finite. Similarly, allmin variables have finite upper bounds, and so
when we maximize thenin variables, the highest values that they
could obtain are also finitédence taint analysis is an essential step
to ensure that our approach works correctly.

However, when the linear program is infeasible, we cannot as-
sign any finite values to the variables to get a feasible solution. As
a result, we cannot obtain the values for the buffer bounds. In such
a case, a safe option would be to setmadix variables toco and
min variables to eo, but that information would be virtually use-
less to the user of the tool because there would be too many false
glarms. The linear program may be infeasible due to a small sub-
set of constraints; in such a scenario, setting all variables to infinite

values will be overly conservative. For instance, the constraints in
Figure?2 are infeasible because of the constraints generated for the
statementounter++

We have developed an approach in which we try to remove a
“small” subset of the original set of constraints so that the resultant
constraint system is feasible. In fact, the problem of “correcting”
infeasible linear programs to make them feasible is a well studied
problem in operations research. The approach is to idehtiy
ducibly Inconsistent SegsalledlIS) [9]. An IIS is a minimal set of
inconsistent constraints, i.e., the constraints in the IIS together are
infeasible, but any subset of constraints in the IIS form a feasible
set. For instance, both the constraints in the linear program in Fig-
ure 5 constitute an IIS because the removal of any one of the two
constraints makes the linear program feasible. There are several
efficient algorithms available to detect IISs in a set of constraints.
We used theElastic Filtering algorithm[9]. The Elastic Filtering
4.2 Handling Infeasible Linear Programs Algorithm takes as input a set of linear constraints and identifies an

While at first glance the method seems to give the desired buffer IS in these constraints (if one.e>.<ists). An infeasjb[e Iir!ear program
bounds, it does not work for all cases. In particular, an optimal solu- May have more than one liSs in it, and the elastic filtering algorithm
tion to a linear program need not even exist. We describe briefly the IS guaranteed to find at least one of these ISs. To produce a fea-
problems faced when using a linear programming based approachSiPI€ linear program from an infeasible linear program, we may be
for determining the buffer bounds. A linear program is said to be required to run the elastic filtering algorithm several times; each run
feasibleif one can find finite values for all the variables such that identifies and removes an IS and produces a smaller linear program
all the constraints are satisfied. For a linear programvariables, which can further be examined for presence of IISs. _
such an assignment is a vectoififl and is called &asiblesolution Figure6 pictorially shows our approach to obtain a set of feasi-
to the linear program. A feasible solution is said todpgimalif it ble linear constraints from a set of infeasible linear constraints. We
also maximizes (or minimizes) the value of the objective function. firSt examine the input set, depicted@sto find out if it is feasi-

A linear program is said to benboundedf a feasible solution ex-  Dl€; if SO, it does not contain IISs, arid can be used as the set of

ists, but no solution optimizes the objective function. For instance, Onstraints in our linear program formulation. If theturns out to
consider: be infeasible, then it means that there is a subsét tfiat forms

one or more 1ISs. This subset is depicted’4sn the figure. The
elastic filtering algorithm, over several runs, identifies and removes
the subse€’ from the set of constraints. The resultant@et C’

is feasible. We then set the values of thex andmin variables
appearing inC’ to co and oo respectively. We do so because we

function:
Minimize: ", . (buflallocimax - buflalloc!min
+ buflused'max - buflused!min )

Note that this objective function combines the constraint vari-
ables acrosall buffers. Since taint analysis ensures thatnadk
variables have finite lower bounds andrmlh variables have finite
upper bounds, we can solve justelinear program, and obtain the
bounds forall buffers.

It must be noted that we are actually interested in obtaining inte-
ger values fobuflalloc!max , buflused!max , buflalloc!min
andbuflused!min . The problem of finding integer solutions to a
linear program is called Integer Linear Programming and is a well
known NP-complete problem ?]. Our approach is thus an approx-
imation to the real problem of findinigtegersolutions that satisfy
the constraints.

Maximize : x
Subject To : x> 5

Any value ofx > 5 is a feasible solution to the above linear pro-
gram, but no finite valug € R optimizes the objective function.



Elastic ) Taint
¢ Filtering C-C' | Analysis D
C!!

The set D obtained
removing C”

Removal of C’ results in
a set C” tainted by C’

The set C of constraints.
C’ denotes a set of lISs

Figure 6: Making an Infeasible set of constraints amenable to Linear Programming

cannot infer the values of these variables using linear programming, tion, we considered each call-site as an assignment of the actual-in
and hence setting these variables to infinite values is a conservativevariables to the formal-in variables, and the return from the func-
approach. These variables whose values are infinite may appeation as an assignment of the formal-out variables to the actual-out
in the set of constraint€’ — C’. The scenario is now similar to  variables. As a result, we merged information across call-sites, thus
taint analysis, where we had some constraint variables whose val-making the analysis imprecise. In this section we describe two tech-
ues were infinite, and we had to identify and remove the constraint niques to incorporate context sensitivity.

variables that were “tainted” by the infinite variables. Constraint inliningis similar in spirit to inlining function bodies

Therefore, we apply the taint analysis algorithm to identify the at call-sites. Observe that in the context-insensitive approach, we
tainted variables, and remove the constraints in which they appear.lost precision because we treatdifferentcall-sites to a function
This step results in further removal of constraints, which are de- identically, i.e, by assigning the actual-in variables at each call-site
picted in the Figured by a subseC” of C — C’. The set of con- to thesameformal parameter.
straints after removal of®”’, denoted asD in Figure 6, satisfies Constraint inlining alleviates this problem by creating a fresh in-
the property that alinax variables appearing in it have finite lower  stance of the constraints of the called function at each call-site. At
bounds, and alhin variables have finite upper bounds. Moreover, each call-site to a function, we produce the constraints for the called
D is feasible, and will only yield optimal solutions when solved function with the local variables and formal parameters renamed
as a linear program with the objective functions described earlier. uniquely for that call-site. This is illustrated in the example below,
Hence, we solve the linear program using the set of constraints in which shows some of the constraints fmpy _buffer from Fig-

D. This algorithm is presented in detail in9). ure 2 specialized for the call-site at lin@) :

We have implemented this approach by extending the commer-
cially available package SoPlex7]. SoPlex is a linear program
solver; we extended it by adding IIS detection and taint analysis.
In practice, linear program solvers work much faster when the con-
straints have beggresolved Presolving is a method by which con-
straints are simplifiedbefore being passed to the solver. Several
such techniques are described in the literatute\e have incor-
porated some of them in our solver.

copy!lalloc!max 1
copylused!max
copylused!min
copy _buffer$return!used!max
copy -buffer$returntused!min

1 > bufferlused!max
1 > bufferlused!max 1
1 < bufferlused!min 1
1 > copy!used!max
1 < copy'used!min

1 -

1
1

Context-sensitivity can be obtained by modeling each call-site to
the function as a set of assignments to the renamed instances of
the formal variables. The actual-in variables are assigned t@the
namedformal-in variables, and theenamedformal-out variables

are assigned to the actual-out variables. As a result, there is exactly
one assignment to each renamed formal-in parameter of the func-
tion, which alleviates the problem of merging information across
different calls to the same function.

4.3 Solving Constraints Hierarchically

While the approach presented above is fast, it is an approxima-
tion algorithm. In particular, the algorithm may remove more con-
straints than are actually required to make the constraints feasible.

As a result, more constraint variables may be set to the values
or -oo. To address this imprecision, we have designed an imple-
mented ahierarchical solver. The idea behind this solver is to

decompose the set of constraints into smaller subsets, and solvj:e,SpfggveW'
igure4.

each subset separately. We do so by constructing a directed acycli
graph (DAG), each of whose vertices represents a set of constraints
Moreover, each constraint is associated with exactly one vertex of
the DAG. The DAG is constructed by defining a notion of “depen-
dency” between a pair of constraints (s€€]]. The topological
order of the DAG naturally defines a hierarchy of the vertices. The
set of constraints corresponding to each vertex is then solved using
linear programming. It can be shown that this approach is math-
ematically precise in that it sets fewest number of constraint vari-
ables toco or -co, and produces precise ranges. We have omitted
the details due to space considerations, consd]tfpr details.

5. ADDING CONTEXT SENSITIVITY

The constraint generation process described in Se&ioms
context-insensitive. When we generated the constraints for a func-

With this approach to constraint generation, we obtain the range
[0..2047] and [1..2048] for ccllalloc  andccllused respectively,
while cc2lalloc  andcc2lused obtain [0..1023] and [1..1024]
which is an improvement over the values reported in

Note that using the constraint inlining approach, we can obtain
the value of a variable with a particular calling context (the call-
ing context will be encoded implicitly in the renamed variable).
However, this comes at a price — since we can have an exponential
number of calling contexts, the constraint system will have a large
number of variables, and as a result, a large number of constraints.
Moreover, this approach cannot work with recursive function calls.

These drawbacks can be overcome through the usaromary
information In this approach to inter-procedural dataflow analysis,
first suggested by Sharir and Pnueli], a “summary” is obtained
for each functiorfoo , and the summary information is used at each
callsite tofoo to “simulate” the effect of the call.

In our case, a function can be summarized by generatimg-
mary constraintswhich summarize the effect of a function in terms
of the constraint variables representing global variables and formal
parameters of the function. This is equivalent to finding a projec-



tion of the constraints generated by the function on the global vari- We used CodeSurfar8 for our experiments, thgcc-3.2.1  com-
ables and the formal parameters of the function. This problem haspiler for building the programs. CodeSurfer implements several
several well-known solutions. In particular, if the function gen- pointer analysis algorithms; in each case we performed the experi-
erates onlydifference constraintghen the problem of finding the ~ ments with a field-sensitive version of Andersen’s analygisHat
summary constraints reduces to an instance of the all-pairs shortestises the common-initial-prefix technique of Yong and Horwitd
path algorithm {2, 19, for which several efficient algorithms are  to deal with structure casts. We configured the tool to use the hi-
known. For more general kinds of constraints, the Fourier-Motzkin erarchical solver described in Sectiér8 for constraint resolution
variable elimination algorithm1[6] can be used. (so the values obtained will be precise) and produce constraints in
Consider, for instance, constraints generateddpy _buffer . a context-insensitive fashion. Sectiéri discusses the effects of
This function does not modify or use global variables, and hence context-sensitive constraint generation.
we obtain the summary constraints (shown below) by projecting

the constraints on the formal parameters of this function. 6.1 WU-FTP Daemon
We tested two versions of theu-ftp daemon, a popular file
copy _buffer$return!alloc!max > bufferlused!max - 1 . . . .
copy _buffer$returniused!max > bufferlusedimax transfer server. Version.5.0 is an older version with several
copy -buffersreturn!alloc!min < bufferlused!min - 1 known vulnerabilities (see CERT advisories CA-1999-13, CA-2001-
copy _buffer$return!used!min < buffertused!min 07 and CA-2001-33), while version6.2 is the current version

To obtain context sensitivity, we use these constraints at eachV_Vith several security patches that address the known vulnerabili-
callsite tocopy _buffer ~ with the formal parameters appearing in  t€s-
the summary constraints replaced with the corresponding actuals. 6.1.1 wu-fipd-2.6.2
Constraints are generated at lii® by replacing the constraint T o .
variables corresponding tauffer andcopy _buffer$return in wu-ftpd-2.6.2  has about8K lines of code, and produceds
the summary constraints with the constraint variables correspond-armnings when examined by our tool. Upon examining the warn-
ing toheader andccl respectively. Similarly, the relationship be- "9, we found 4 previously unreported overruns; we will describe
tweencc2 andbuf at line (10) can be obtained by substituting ©N€ Of these in detail. _ )
them in place otopy _buffersreturn andbuffer  respectively, The tool reported a potential overrun on a buffer pointed to by
in the summary constraints. Note that we must still retain the as- accesspath  inthe proceduresad servers line inrdserversc
signment of the actual variable to the formal-in parameter so that Where as many as192 bytes could be copied into the buffer for
we can obtain the values of the constraint variables corresponding""h_'Ch up t04095 bytes were allocated. Figufeshows the code
to the local variables of the called function. snippet fronread _servers _line whichisresponsible for the over-
This approach is more efficient than the constraint inlining ap- "™
proach since it does not cause an increase in the number of con-

int read_servers_line (FILE *svrfp,

straint variables. However it is also less precise than constraint in- char *hostaddress,
lining because of the same reason. Observe that in constraint in- ) char *accesspath){
lining the variables were renamed at each callsite, thus enabling ug ~ Static char buffer[BUFSIZ];

to examine t_heir values due to a par_ticular calling context. On the while (fgets(ouffer, BUFSIZ, svfp)){

other hand, in the summary constraints approach the values of the .

variables are merged across different calling contexts, thus leading if (S(Qgct: ir?e;*&?jft?z_r‘ame(hcm)){

to loss of precision. For instance, consider the program in Fig- memmove(&n, hp->h_addr, sizeof(in));

ure 2. While the values forcllused , ccllalloc , cc2lused strcpy(hostaddress, inet_ntoa(in));
andcc2lalloc  are the same as obtained using constraint inlin- }
ing, the values otopy'alloc  andcopy!'used are [..2047] and
[1..2048] respectively. This is because the values that these vari-
ables obtained due to calls at li® and line(10) are “merged”. strepy(accesspath, acp);
The constraint inlining approach returns the valug2(47] and }
[1..2048] for copy'alloc ~ andcopy'used respectively due to the
call at line(7) , and returns(..1023] and [1..1024] due to the call
atline(10) .

This approach is capable of handling recursive function calls,
however for simplicity we do not attempt to summarize recursive
function calls in our prototype implementation.

else
strcpy(hostaddress, hcp);

Figure 7: Code snippet fromwu-ftpd-2.6.2

Thefgets statement may copy as many&$2 (BUFSIZ) bytes
into buffer , which is processed further in this function. As a result
of this processingacp andhcp point to locations insidéuffer
By an appropriate choice of the contentstoffer , one could
6. EXPERIENCE WITH THE TOOL makeacp or hcp point to a string buffer as long &190 bytes,

We tested our prototype implementation on several popular com- which could result in an overflow on the buffer pointed to either by
mercially used programs. In each case, the tool produced severalhccesspath or hostname respectively.
warnings; we used these warnings, combined with CodeSurfer fea- The procedureead _servers _line is called at several places
tures such as slicing, to check for real overruns. We tested to see ifin the code. For instance, it is called in the main procedure in
the tool discovered known overruns documented in public databasesitprestart.c whereread _servers _line is called with two lo-
such adbugtraq [1] and CERT P], and also checked to see ifany cal buffers,hostaddress  andconfigdir , which have been al-
overruns that were previously unreported were discovered. We re-located32 bytes and4095 bytes respectively. This call reads the
port our experience witlvu-ftpd  andsendmail . Results on a few contents of the filePATHFTPSERVERSwhich typically has privi-
more packages are ing). leged access. However, in non-standard and unusual configurations

Our experiments were performed or8&Hz Pentiumd Xeon of the system, PATHFTPSERVERS0uld be written to by a local
processor machine withGB RAM, running Debian GNU/Linus.0. user. As a result, the buffetestaddress  and configdir can



overflow based on a carefully chosen input string, possibly leading 6.2.1 sendmail-8.7.6

statement
rectifies the

to a local exploit. The use of strncpy  or stricpy
instead of the unsafgtrcpy in read _servers _line
problem.

A few other new overruns which were detected by the tool were:
e An uncheckedprintf  in main in the fileftprestart.c could
result in16383 bytes being written into a local buffer that was allo-
cated4095 bytes.
e Another uncheckedprintf  in main in the fileftprestart.c
could result in8447 bytes being written into a local buffer that was
allocated4095 bytes.
e An uncheckedtrcpy in main in the fileftprestart.c could
result in8192 bytes being written into a local buffer that was allo-
cated4095 bytes.

sendmail-8.7.6 has abouB8K lines of code; when analyzed
by our tool, it produced®95 warnings. Due to the large nhumber
of warnings, we focused on scanning the warnings to detect some
known overruns.

Wagneret al. use BOON to report an off-by-one bug(] in
sendmail-8.9.3 where as many a&l bytes, returned by a func-
tion queuename, could be written into &0 byte arraydfname . Our
tool identified four possible program points sandmail-8.7.6
where the return value fromueuename is copied usingstrcpy
statements into buffers which are alloca@tlbytes. As in B(],
our tool reported that the return value frappeuename could be
up to 257 bytes long, and further manual analysis was required
to decipher that this was in fact an off-by-one bug. Another mi-

_PATHFTPACCESScan be used to cause the overrun. As before,

mistakenly allocated onlg bytes for the buffedelimbuf ~ which

ten to by a local user in non-standard configurations. We contacted character.

thewu-ftpd developers, and they have acknowledged the presence

of these bugs in their code, and are in the process of fixing the bugs §.2.2 sendmail-8.11.6

(at the time of writing this paper).

6.1.2 wu-ftpd-2.5.0

wu-ftpd-2.5.0 has abouti6K lines of code; when analyzed
by our tool, it producedi39 warnings. We analyzed the warn-
ings to check for a widely exploited overrun reported in CERT
advisory CA-1999-13. The buffer overflow was on a globally de-
clared buffermapped_path in the procedurelo_elem in the file
fipd.c . It was noted in 27] that the overrun was due to a state-
mentstrcat(mapped  _path, dir) , where the variableir could
be derived (indirectly) from user input. As aresultit was possible to
overflowmapped_path for which 4095 bytes were allocated. Our
tool reported the range fonapped_pathlused as P..+oco], while
mapped_path!alloc was [095..4095]. The call strcat(dst,
src) would be modeled as four linear constraints by our tool:

dst "lused'max > dstlused!max  + srclused!max
dstlused!max > dst ‘lused!max
dst "lused!min < dstlused!min

dstlused!min < dst “lused!min

+ srclused!min

sendmail-8.11.6 is significantly larger than versio8.7.6
and has58K lines of code; when we ran our tool, it producés
warnings. We examined the warnings to check if the tool discov-
ered the new vulnerabilities reported in March 2003.

One of these vulnerabilities is on a functiorackaddr in the
file headers.c , which parses an incoming e-mail address string.
This function stores the address string in a local static buffer called
buf thatis declared to bRIAXNAME + bytes long, and performs
several boundary condition checks to see thdt does not over-
flow. However, the condition that handles the angle bracket} (
in theFrom address string is imprecise, thus leading to the overflow
[5]-

Our tool reported thdip, a pointer to the buffesuf in the func-
tion had bp'alloc!max = +oo and bplused'max = +oo, thus
raising an warning. However, the reason thgilloc'max  and
bplused'max were set to vo was because of several pointer arith-
metic statements in the body of the function. In particular, the state-
mentbp-- resulted irbplallocimax = +oo andbplused!max =
+00. Hence, this warning would have existed even if the boundary

The first two constraints make the linear program infeasible, as ex- condition checks were correct.

plained in Sectior, and result indstlused!'max  being set to #o.
Hence, inwu-ftpd-2.5.0 , mapped_path!used!max  will be set

We note that this bug is hard to track precisely in a flow-insensitive
analysis. Moreover, we have discovered that the use of control de-

to +oco, and the tool would have reported the same range even in Pendence information, which associates each statement with the
the absence of an overrun. We used CodeSurfer's program S|ic-predicate that decides whether the statement will be executed, is

ing feature to confirm thadir could be derived from user input.
We found that the procedut® elem , one of whose parameters is
dir , was called from the procedun@pping _chdir . This function

was in turn called from the procedusmd, whose input arguments

could be controlled by the user. This shows the importance of pro-
viding the end user with several program analysis features. Thesewith wu-ftpd-2.6.2

crucial to detecting such overruns reliably. We are working towards
enhancing our infrastructure to support these features.

6.3 Performance

Table 1 contains representative numbers from our experiments
andsendmail-8.7.6 . All timings were

features, such as program slicing and control and data dependencebtained using the UNIXime command. ©DESURFERdenotes
predecessors, which are part of CodeSurfer, aid the user of the toolthe time taken by CodeSurfer to analyze the programygERA-
to understand the source code better and hence locate the source afor denotes the time taken for constraint generation, whilenT

the vulnerability.

6.2 Sendmail

denotes the time taken for taint analysis. The constraints produced
can be resolved in one of two ways; the rows Ld28E and HER-
SoLVE report the time taken by the 1IS detection based approach

Sendmail is a very popular mail transfer agent. We analyzed and the hierarchical solves approach respectively (Sedjiohe

sendmail-8.7.6 , an old version that was released after a thor-
ough code audit of versiodi7.5 . However, this version has sev-
eral known vulnerabilities. We also analyzsghdmail-8.11.6  ;

in March 2003, two new buffer overrun vulnerabilities were re-
ported in the then latest versionsghdmail . Bothsendmail-8.7.6
andsendmail-8.11.6 are vulnerable to these overruns as well.

number of constraints output by the constraint generator is reported
in the row RRE-TAINT, while POST-TAINT denotes the number of
constraints after taint-analysis.

As noted earlier, the IIS detection based approach is more effi-
cient, but is not mathematically precise, whereas the hierarchical
solver is mathematically precise. We however found that the solu-



wu-ftpd-2.6.2

sendmail-8.7.6

ToTAL (LP./HIER.)

100.55/106.82 sec

338.24/350.96 sec

Number of Constraints Ge

nerated

PRE-TAINT
POSTTAINT

22008
14972

104162
24343

e Out of 7310 unspecialized range variableK)6 range variables

CODESURFER 12.54 sec 30.09 sec ; ; ; ;

CENERATOR 74.88 S6C 266.39 seC had obtained more precise valu_es in gt_least one calling context.
TAINT 9.32 sec 28.66 sec As noted earlier, the constraint inlining approach returns more
LPSOLVE 3.81 sec 13.10 sec precise information than the summary constraints based approach.
HIERSOLVE 10.08 sec 25.82 sec To take a concrete example, we consider the program varialede

(an integer), which is the formal parameter of a functienmesg
in the file access.c  in wu-ftpd-2.6.2 . The functionpr _mesg
is called from several places in the code with different values for

the parametemsgcode. The summary constraints approach re-
sults in the valued30..550] for the range variable corresponding
to msgcode. Constraint inlining refines these ranges — for instance,
it is able to infer thapr _mesg is always called with the valug30
from the functionpass in the fileftpd.c

tion produced by the IIS detection based approach is a good approx- . .
imati)on to the s}cl)lution obtained by the hieprgrchical soI?/er. Inri:[;se 6.5 Effects of Pointer Analysis
of wu-ftpd-2.6.2 fewer than5% of the constraint variables, and As observed in SectioB, we were able to reduce false negatives
in the case ofendmail-8.7.6 fewer thar2.25% of the constraint through the use of pointer analysis. The tool is capable of han-
variables obtained imprecise values when we used the IIS detectiondling arbitrary levels of dereferencing. For instancey ffoints to
based approach. We also found that this imprecision did not signif- a pointer to a structure, the pointer analysis algorithms correctly
icantly affect the number of warnings — in casewfftpd-2.6.2 infer this fact. Similarly, ifp andq are of typechar**  (i.e., they
and sendmail-8.7.6 the 1IS based approach resultedlirand point-to pointers to buffers), the constraints for a statement such
2 more warnings respectively (these warnings were false alarms), asstrcpy(*p, *q) would be correctly modeled in terms of the
which shows that in practice we can use the faster 1IS detection points-to sets op andq (recall that we generated constraints in
based approach with little loss of precision. terms of pointers to buffers rather than buffers themselves).
To observe the benefits of pointer analysis we generated con-

6.4 Adding Context Sensitivity straints with the pointer analysis algorithms turned off. Since fewer

We report here our experience with using context-sensitive anal- CONstraints will be generated, we can expect to see fewer warnings;
ysis onwuftpd-2.6.2  using both the constraint inlining approach " the absence of these warnings, false negatlves_ may result. We
and the summary constraints approach. Note #idaling context ~ OPServed a concrete case of this in the casgeodmail-8.7.6
sensitivity will not find new overrunsAdding context sensitivity When we generated constraints without including the results of the

changes the constraints generated so that they precisely reflect th@0inter analysis algorithms, the tool outptiil warnings (as op-
call-return semantics of functions. As a result, we can expect more PoSed t@95 warnings). However, this method resulted in the warn-

precise values from the constraint solvers. To measure the effec-"g On the arraylfname being suppressed, so the tool missed the
tiveness of each approach, we will count the number of range vari- ©f-by-one bug that we described earlier. A closer look at the pro-

ables that were refined in comparison to the corresponding rangesc€durequeuename revealed that in the absence of points-to facts,

obtained in a context-insensitive analysis. Recall that the value of the tool failed to genera‘\‘toe c‘?nftralnts for a statement:

a range variablear is given by the corresponding constraint vari-  SnPrintf(buf, sizeof buf, "%cf%s", type, e — >e.id)
ablesvar'min  andvar'max as par'min ..var'max ]. We chose in t_he body o_fqueuename since points to facts for the variabée
this metric since, as explained in Sectis, the detector uses the ~ Which is @ pointer to a structure, were not generated.

values of the ranges to produce diagnostic information, and more Ve note that BOON{(] identified this off-by-one bug because
precise ranges will more precise diagnostic information. of a simple assumption made to model the effect of pointers, i.e.,

The context-insensitive analysis emftpd-2.6.2  vields val- BOON assumes that any pointer to a structure of fyman point
ues for7310 range variables. Using the summary constraints ap- t© @ll structures of typ&@. While this technique can be effective at
proach, we found thal2 of these range variables obtained more discovering bugs, the lack of precise points-to information will lead
precise values. Note that in this approach the number of constraint'© @ larger number of false alarms.
variables (and hence the number of range variables) is the same a% .
in the context-insensitive analysis. However, the number of con- 6 Shortcommgs
straints may change, and we observetVaincrease in the num- While we found the prototype implementation a useful tool to
ber of constraints. This change can be attributed to the fact thataudit several real world applications, we also noted several short-
summarization introduces a some constraints (the summaries), anccomings and are working towards overcoming these limitations.
removes some constraints (the old call-site assignment constraints). First, the flow insensitivity of the analysis meant that we would

The constraint inlining approach, on the other hand, leads to a have several false alarms. Through the use of slicing we were able
5.8x increase in the number of constraints, an8l.ax increase to weed out the false alarms, nevertheless it was a manual and often
in the number of constraint variables (and hence the number of painstaking procedure. Moreover, the benefits observed by adding
range variables). This can be attributed to the fact that the inlining context-sensitivity were somewhat limited because of the flow in-
based approach specializes the set of constraints at each callsitesensitivity of the analysis. By transitioning to a Static Single As-
In particular, we observed that th810 range variables from the  signment (SSA) representationd] of the program, we can add a
context-insensitive analysis were specialize#3304 range vari- limited form of flow sensitivity to the program. However, the SSA
ables based on calling context. We can count the number of rangerepresentation will result in a large number of constraint variables.
variables that obtained more precise values in two possible ways: Fortunately, we have observed that the solvers readily scale to large
e Out of 63704 specialized range variables497 range variables linear programs with several thousand variables.
obtained more precise values than the corresponding unspecialized Second, by modeling constraints in terms of pointers to buffers
range variables. rather than buffers, we can miss overruns, thus leading to false neg-

Table 1: Performance of the tool



atives B0]. However, the reason we did so was because the pointer [16] G. B. Dantzig and B. Curtis Eaves. Fourier-Motzkin

analysis algorithms themselves were flow- and context-insensitive, elimination and its duallournal of Combinatorial Theory

and generating constraints in terms of buffers would have resulted (A), 14:288-297, 1973.

in a large number of constraints and consequently a large number[17] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic

of false alarms. By transitioning to “better” pointer analysis al- tool for statically detecting all buffer overflows in C. KCM

gorithms we can model constraints in terms of buffers themselves, Conf. on Prog. Lang. Design and Impl. (PLDB003.

thus eliminating the false negatives. [18] H. Etoh and K. Yoda. Protecting from stack-smashing
attacks. 2000www.trl.ibm.com/projects/security/ssp/main.html.

[19] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek.
Buffer overrun detection using linear programming and static
analysis. 2003. UW-Madison Comp. Sci. Tech. Report 1488.
ftp://ftp.cs.wisc.edu/pub/tech-reports/reports/2003/tr1488.ps.Z

[20] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing

7. CONCLUSIONS

We have demonstrated a light-weight technique to analyze C
source code to detect buffer overrun vulnerabilities. We have shown
the efficacy of the technique by applying it to real world exam-
ples and identifying new vulnerabilities in a popular security critical i :
package. Our techniques use novel ideas from the linear program- using dependence grapi#sCM Transactions on Prog. Lang.s
ming literature, and provide a way to enhance context sensitivity. and Systems (TOPLAS)2(1):26-60, 1990.

The output of our tool, coupled with other program understanding [21] S. Horwitz, T. Reps, M. Sagiv, and G. Rosay. Speeding up
features of CodeSurfer, such as static slicing, aid the user to com- slicing. In2"¢ ACM Symp. on Foundations of Soft. Engg.
prehend and eliminate bugs from source code. (FSE) pages 11-20, New York, 1994.

[22] D. Larochelle and D. Evans. Statically detecting likely buffer
Acknowledgments. We would like to thank the members of the overflow vulnerabilities. INL0* USENIX Sec. Symp001.
Wisconsin Safety Analyzer research group, Michael Ferris, Aditya [23] E. Larson and T. Austin. High coverage detection of input
Rao and the anonymous reviewers for their suggestions. related security faults. Ih2'* USENIX Sec. SymR003.

[24] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe

8. REFERENCES

[1] bugtrag .www.securityfocus.com.

[2] CERT/CC advisoriessww.cert.org/advisories.

[3] The twenty most critical internet security vulnerabilities.
www.sans.org/top20.

[4] Aleph-one. Smashing the stack for fun and profit. Nov 1996.

Phrack Magazine.

[5] Technical analysis of remote sendmail vulnerability.
www.securityfocus.com/archive/1/313757.

[6] L. O. AndersenProgram Analysis and Specialization for the
C Programming Languag&hD thesis, DIKU, Univ. of
Copenhagen, 1994. (DIKU report 94/19).

[7] E. D. Anderson and K. D. Anderson. Presolving in linear
programmingMathematical Prog.71(2):221-245, 1995.

[8] R.Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating
array-bounds checks on demandA@M Conf. on Prog.
Lang. Design and Impl. (PLDJR000.

[9] J. W. Chinnek and E. W. Dravinieks. Locating minimal
infeasible constraint sets in linear progra®&®SA Journal
on Computing3(2):157-168, 1991.

[10] T-C. Chiueh and F-H. Hsu. RAD: A compile-time solution to
buffer overflow attacks. 121°" Intl. Conf. on Distributed
Computing Systems (ICDC2001.

[11] J. Condit, M. Harren, S. McPeak, G. C. Necula, and
W. Weimer. CCured in the Real World. BRCM Conf. on
Prog. Lang. Design and Impl. (PLDIR003.

[12] T. H. Cormen, C. E. Lieserson, R. L. Rivest, and C. Stein.
Introduction to AlgorithmsMIT Press, 2001.

[13] C. Cowan, S. Beattie, R-F Day., C. Pu, P. Wagle, and
E. Walthinsen. Automatic detection and prevention of buffer
overflow attacks. 17" USENIX Sec. Symp998.

[14] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
PointGuard ™ : Protecting pointers from buffer overflow
vulnerabilities. IN12t* USENIX Sec. Sym®003.

[15] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently computing static single assignment
form and the control dependence grapM Trans. on
Prog. Lang. and Systems (TOPLAS3(4):452—-490, 1991.

retrofitting of legacy code. IACM Conf. on the Principles of
Prog. Lang. (POPL)2002.

[25] CPLEX Optimizerwww.cplex.com/.

[26] R. Rugina and M. C. Rinard. Symbolic bounds analysis of
pointers, array indices and accessed memory regions. In
ACM Conf. on Prog. Lang. Design and Impl. (PLDP2000.

[27] A. Schrijver.Theory of Linear and Integer Programming
Wiley, N.Y., 1986.

[28] M. Sharir and A. PnueliTwo Approaches to Interprocedural
Dataflow AnalysisPrentice Hall Inc., 1981.

[29] D. WagnerStatic Analysis and Computer Security: New
techniques for software assurané&hD thesis, UC Berkeley,
Dec 2000.

[30] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun
vulnerabilities. InNetwork and Distributed System Security
(NDSS) 2000.

[31] S.J. WrightPrimal-Dual Interior-Point MethodsSIAM
Philadelphia, 1997.

[32] R. WunderlingParalleler und Objektorientierter
Simplex-AlgorithmusPhD thesis, Konrad-Zuse-Zentrum fur
Informationstechnik Berlin, TR 1996-09.
www.zib.de/PaperWeb/abstracts/TR-96-09/.

[33] Y. Xie, A. Chou, and D. Engler. ARCHER: Using symbolic,
path-sensitive analysis to detect memory access erro®” In
European Soft. Engg. Conf. and’#1ACM Symp. on
Foundation of Soft. Engg. (ESEC/FSEDO3.

[34] S. Yong, S. Horwitz, and T. Reps. Pointer analysis for
programs with structures and casting A@M Conf. on Prog.
Lang. Design and Impl. (PLDJY1999.



	Introduction
	Related Work
	Overall Tool Architecture
	CodeSurfer
	Constraint Generation
	Taint Analysis
	Constraint Solving
	Detecting Overruns

	Constraint Resolution using Linear Programming
	Overview of the solver
	Handling Infeasible Linear Programs
	Solving Constraints Hierarchically

	Adding Context Sensitivity
	Experience with the tool
	WU-FTP Daemon
	wu-ftpd-2.6.2
	wu-ftpd-2.5.0

	Sendmail
	sendmail-8.7.6
	sendmail-8.11.6

	Performance
	Adding Context Sensitivity
	Effects of Pointer Analysis
	Shortcomings

	Conclusions
	REFERENCES -9pt 

